Loading…
View analytic
Thursday, October 18 • 11:00am - 11:30am
Art Class for Dragons: Supporting GPU compilation without metadata hacks!

Sign up or log in to save this to your schedule and see who's attending!

Modern programming languages targeting GPUs include features that are not commonly found in conventional programming languages, such as C and C++, and are, therefore, not natively representable in LLVM IR.

This limits the applicability of LLVM to target GPU hardware for both graphics and massively parallel compute applications. Moreover, the lack of a unified way to represent GPU-related features has led to different and mutually incompatible solutions across different vendors, thereby limiting interoperability of LLVM-based GPU transformation passes and tools.

Many features within the Vulkan graphics API and language [1] highlight the diversity of GPU hardware. For example, Vulkan allows different attributes on structures that specify different memory padding rules. Such semantic information is currently not natively representable in LLVM IR. Graphics programming models also make extensive use of special memory regions that are mapped as address spaces in LLVM. However, no semantic information is attributed to address spaces at the LLVM IR level and the correct behaviour and transformation rules have to be inferred from the address space within the compilation passes.

As some of these features have no direct representation in LLVM, various translators, e.g SPIR-V->LLVM translator [2], Microsoft DXIL compiler [3], AMD's OpenSource compiler for Vulkan [4], make use of side features of LLVM IR, such as metadata and intrinsics, to represent the semantic information that cannot be easily captured. This creates an extra burden on compilation passes targeting GPU hardware as the semantic information has to be recreated from the metadata. Additionally, some translators such as the Microsoft DXIL compiler have forked the Clang and LLVM repositories and made proprietary changes to the IR in order to more easily support the required features natively. A more general approach would be to look at how upstream LLVM can be augmented to represent some, if not all, of the semantic information required for massively parallel SIMD, SPMD, and in general, graphics applications.

This talk will look at the proprietary LLVM IR modifications made in translators such as the Khronos SPIRV-LLVM translator, AMDs open source driver for Vulkan SPIRV, the original Khronos SPIR specification [5], Microsoft's DXIL compiler and Nvidia's NVVM specification [6]. The aim is to extract a common set of features present in modern graphics and compute languages for GPUs, describe how translators are currently representing these features in LLVM and suggest ways of augmenting the LLVM IR to natively represent these features. The intention with this talk is to open up a dialogue among IR developers to look at how we can, if there is agreement, extend LLVM in a way that supports a more diverse set of hardware types.

[1] - https://www.khronos.org/registry/vulkan/ [2] - https://github.com/KhronosGroup/SPIRV-LLVM-Translator [3] - https://github.com/Microsoft/DirectXShaderCompiler/blob/master/docs/DXIL.rst [4] - https://github.com/GPUOpen-Drivers/AMDVLK [5] - https://www.khronos.org/registry/SPIR/specs/spir_spec-2.0.pdf [6] - https://docs.nvidia.com/cuda/pdf/NVVM_IR_Specification.pdf

Speakers

Thursday October 18, 2018 11:00am - 11:30am
2 - Technical Talk (Rm LL21AB)

Attendees (28)